A Neumann series based method for photoacoustic tomography on irregular domains

نویسندگان

  • Eric Chung
  • Chi Yeung Lam
  • Jianliang Qian
  • JIANLIANG QIAN
چکیده

Recently, a Neumann series based numerical method is developed for photoacoustic tomography in a paper by Qian, Stefanov, Uhlmann, and Zhao [An efficient neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. SIAM J. Imag. Sci., 4:850–883, 2011]. It is an efficient and convergent numerical scheme that recovers the initial condition of an acoustic wave equation with non-constant sound speeds by boundary measurements. In practical applications, the domains of interest typically have irregular geometries and contain media with discontinuous sound speeds, and these issues pose challenges for the development of efficient solvers. In this paper, we propose a new algorithm which is based on the use of the staggered discontinuous Galerkin method for solving the underlying wave propagation problem. It gives a convenient way to handle domains with complex geometries and discontinuous sound speeds. Our numerical results show that the method is able to recover the initial condition accurately.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Neumann Series-Based Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed

We present an efficient algorithm for reconstructing an unknown source in Thermoacoustic and Photoacoustic Tomography based on the recent advances in understanding the theoretical nature of the problem. We work with variable sound speeds that might be also discontinuous across some surface. The latter problem arises in brain imaging. The algorithmic development is based on an explicit formula i...

متن کامل

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

Thermoacoustic Tomography Arising in Brain Imaging

We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the...

متن کامل

A Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)

A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...

متن کامل

Multiwave methods via ultrasound

We survey recent results by the authors on multiwave methods where the high-resolution method is ultrasound. We consider the inverse problem of determining a source inside a medium from ultrasound measurements made on the boundary of the medium. Some multiwave medical imaging methods where this is considered are photoacoustic tomography, thermoacoustic tomography, ultrasound modulated tomograph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013